The The locating-chromatic number for certain operation of pizza graphs
DOI:
https://doi.org/10.30606/absis.v7i2.2970Keywords:
location chromatic number, pizza graph, graph theory, graph operations, teori graf, lokasi kromatikAbstract
This study investigates the location chromatic number resulting from specific operations on pizza graphs. The location chromatic number of a graph extends the concept of vertex coloring and graph partition dimension. This research aims to deepen the understanding of how certain operations influence the location chromatic number of pizza graphs. By conducting rigorous mathematical analysis, this study demonstrates the effects of particular operations on the chromatic properties of these graphs. The results provide valuable insights into the characteristics of pizza graphs, which are known for their complex and irregular structures. These findings contribute to the broader development of graph theory, particularly in understanding modified graph structures. Additionally, the research highlights the potential applications of these concepts in various scientific and mathematical domains. This study serves as a foundation for future exploration of chromatic properties in more complex and diverse graph structures.
Downloads
References
Asmiati, A., Damayanti, M., & Yulianti, L. (2021). On the Locating Chromatic Number of Barbell Shadow Path Graph. Indonesian Journal of Combinatorics, 5(2), 82. https://doi.org/10.19184/ijc.2021.5.2.4
Asmiati, Irawan, A., Nuryaman, A., & Muludi, K. (2023). The locating chromatic number for certain operation of origami graphs. Mathematics and Statistics, 11(1), 101–106. https://doi.org/10.13189/ms.2023.110111
Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., & Zhang, P. (2002). The locating-chromatic number of a graph. Bulletin of the Institute of Combinatorics and It’s Applications, 36, 89–101.
Chartrand, G., Salehi, E., & Zhang, P. (2000). The partition dimension of a graph. Aequationes Mathematicae, 59(1–2), 45–54. https://doi.org/10.1007/PL00000127
Chartrand, G., Silalahi, E. & P. Z. (2000). The partition dimension of a graph. Aequationes Math., 59, 45–54.
Irawan, A., Asmiati, Suharsono, S., & Muludi, K. (2021). The locating-chromatic number of certain barbell origami graphs. Journal of Physics: Conference Series, 1751(1), 1–12. https://doi.org/10.1088/1742-6596/1751/1/012017
Irawan, A., Asmiati, A., Zakaria, L., & Muludi, K. (2021). The locating-chromatic number of origami graphs. Algorithms, 14(6), 1–15. https://doi.org/10.3390/a14060167
Irawan, A., Asmiati, Zakaria, L., Muludi, K., & Bernadhita, H, S, U. (2021). Subdivision of Certain Barbell Operation of Origami Graphs has Locating-Chromatic Number Five. 21(9).
Lessya, K. N., Welyyanti, D., & Yulianti, L. (2024). Bilangan Kromatik Lokasi Graf Helm Hm Dengan 3 ≤ m ≤ 9. Jurnal Matematika UNAND, 12(3), 222. https://doi.org/10.25077/jmua.12.3.222-228.2023
Johnson, M. (1993). Structure activity maps for visualizing the graph variables arising in drug design. Journal Of Biopharmaceutical Statistics, 3, 203–236. https://doi.org/10.1080/10543409308835060
Nabila, S., & Salman, A. N. M. (2015). The rainbow connection number of origami graphs and pizza graphs. Procedia Computer Science, 74(December), 162–167. https://doi.org/10.1016/j.procs.2015.12.093
Prawinasti, K., Ansori, M., Asmiati, Notiragayu, & G N Rofi, A. R. (2021). The Locating Chromatic Number for Split Graph of Cycle. Journal of Physics: Conference Series, 1751(1). https://doi.org/10.1088/1742-6596/1751/1/012009
Rahmatalia, S., Asmiati, A., & Notiragayu, N. (2022). Bilangan Kromatik Lokasi Graf Split Lintasan. Jurnal Matematika Integratif, 18(1), 73. https://doi.org/10.24198/jmi.v18.n1.36091.73-80
Saenpholphat, V., & Zhang, P. (2004). Conditional resolvability in graphs: A survey. International Journal of Mathematics and Mathematical Sciences, 2004(38), 1997–2017. https://doi.org/10.1155/S0161171204311403
Surbakti, N. M., Kartika, D., Nasution, H., & Dewi, S. (2023). The Locating Chromatic Number for Pizza Graphs. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 20(2), 126–131. https://doi.org/10.31851/sainmatika.v20i2.13085
Zulkarnain, D., Yulianti, L., Welyyanti, D., Mardimar, K. K., & Fajri, M. R. (2024). on the Locating Chromatic Number of Disjoint Union of Buckminsterfullerene Graphs. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 18(2), 0915–0922. https://doi.org/10.30598/barekengvol18iss2pp0915-0922
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agus Irawan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.