Application of sugeno's fuzzy inference system (FIS) in determining palm oil production

Authors

  • Maristella Universitas Negeri Medan, Indonesia
  • Marlina Setia Sinaga Universitas Negeri Medan, Indonesia

DOI:

https://doi.org/10.30606/absis.v8i1.2788

Keywords:

Fuzzy Sugeno, Kelapa Sawit, MAPE, palm oil

Abstract

Palm oil is an important export commodity in Indonesia, and factors such as palm oil prices, production, and palm oil prices influence palm oil production. In this research, the fuzzy logic method is used to overcome uncertainty in predicting palm oil production. Various fuzzy methods, including Mamdani, Tsukamoto, and Sugeno, are used to model production based on certain factors. The type of research carried out in this research is a literature study and this research uses secondary data or data obtained by other parties. Secondary data taken is CPO price data, palm oil prices and palm oil production data. The prediction results for palm oil production using the Sugeno fuzzy method for several months are based on factors such as CPO prices and palm oil prices in the fuzzy system. The final results of MAPE provide information about the level of accuracy of the model in predicting palm oil production, which is 7.09%. FIS Sugeno connects input-output with fuzzy rules. The steps include variable selection, membership functions, rules, inference, defuzzification, evaluation, optimization, and implementation. The predicted MAPE is 7.09%, indicating the accuracy of the model in estimating palm oil production compared to the actual value.

Downloads

Download data is not yet available.

References

Alham, F., & Anzitha, S. (2020). Analisis pemasaran tandan buah segar (TBS) kelapa sawit Kota Langsa. Jurnal Penelitian Agrisamudra, 7(1), 57–63.

Andriyani, S., & Sitohang, N. (2018). Implementasi metode backpropagation untuk prediksi harga jual kelapa sawit berdasarkan kualitas buah. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), 4(2), 155–164.

Anisah, S., Yulianto, T., & Faisol, F. (2021). Perbandingan Fuzzy Sugeno dan Fuzzy Mamdani pada analisis minat masyarakat terhadap produk air minum dalam kemasan lokal dan nasional di Madura. Zeta-Math Journal, 6(1), 29–37.

Apriani, W., & Hayati, R. (2021). Metode ARIMA untuk memodelkan volume produksi kelapa sawit pada PT. Socfindo di Kabupaten Aceh Tamiang. Jurnal Absis: Jurnal Pendidikan Matematika dan Matematika, 3(2), 309–319.

Fevriera, S., & Devi, F. S. (2023). Analisis produksi kelapa sawit Indonesia: Pendekatan mikro dan makro ekonomi. Jurnal Transformatif UNKRISWINA Sumba, 12(1), 1–16.

Gusmira, E., Kukuh, M., & Ma’rufi, A. (2022). Analisis dan pemetaan mata kuliah bersyarat program studi fisika menggunakan backpropagation neural network. Jurnal Penelitian Pembelajaran Fisika, 13(2), 271–276.

Ilham, W., & Fajri, N. (2020). Penentuan jumlah produksi tahu dengan menggunakan metode Fuzzy Tsukamoto pada UKM Abadi berbasis web. Jurnal Digit: Digital of Information Technology, 10(1), 71–82.

Juliandri, J. (2020). Analisis tingkat akurasi dalam menunjang diagnosa penyakit tanaman jagung dengan menggunakan metode Tsukamoto. Jurnal Ilmiah Core IT: Community Research Information Technology, 8(5).

Kadim, N., & Arliana, L. (2014). Analisa hubungan faktor yang mempengaruhi harga jual minyak kelapa sawit pada PT. Langkat Nusantara Kepong PKS Padang Brahrang. Informasi dan Teknologi Ilmiah, 3(2), 49–56.

Maulidda, R., Muslimin, S., & Ami, H. (2022). Penerapan pembelajaran logika fuzzy pada robot penghindar rintangan. JUPITER: Jurnal Penelitian Ilmu dan Teknologi Komputer, 14(1), 106–115.

Nasution, V. M., & Prakarsa, G. (2020). Optimasi produksi barang menggunakan logika fuzzy metode Mamdani. Jurnal Media Informatika Budidarma, 4(1), 129–135.

Nasution, W. R., Nawawi, Z. M., & Inayah, N. (2022). Analisis pemanfaatan lidi kelapa sawit dalam meningkatkan pendapatan dan kesejahteraan masyarakat perspektif ekonomi Islam. Ulil Albab: Jurnal Ilmiah Multidisiplin, 1(8), 2651–2658.

Salendah, J., Kalele, P., Tulenan, A., & Joshua, J. S. R. (2022). Penentuan beasiswa dengan metode Fuzzy Tsukamoto berbasis web. Seminar Nasional Ilmu Komputer (SNASIKOM), 2(1), 81–90.

Syahidin, S., & Erma, E. (2021). Analisis faktor-faktor yang mempengaruhi produksi sere wangi di Kecamatan Terangun Kabupaten Gayo Lues. Gajah Putih Journal of Economics Review, 3(2), 76–88.

Windirah, N., & Novanda, R. R. (2023). Price volatility analysis on Indonesian palm oil commodities by model ARCH/GARCH. Jurnal Sosial Ekonomi Pertanian, 19(2), 101–114.

Yanto, B. (2019). Penerapan metode inferensi Fuzzy Takagi Sugeno-Kang untuk prediksi hasil panen kelapa sawit. JISA (Jurnal Informatika dan Sains), 2(2), 51–55.

Downloads

Published

2025-04-30

How to Cite

Maristella, & Sinaga, M. S. (2025). Application of sugeno’s fuzzy inference system (FIS) in determining palm oil production. Jurnal Absis: Jurnal Pendidikan Matematika Dan Matematika, 8(1), 135–148. https://doi.org/10.30606/absis.v8i1.2788