Analisis Monitoring Dampak Pengukuran Variabilitas Suhu Lingkungan Solar Panel Off-Grid Pada Model Panel Monocrystalline

Authors

  • Regi Wando Pratama Siregar Universitas Medan Area
  • Habib Satria Universitas Medan Area

DOI:

https://doi.org/10.30606/rjti.v4i2.3414

Keywords:

Measurement, Solar Panel, Environmental Temperature Fluctuations, Monocrystalline Panel, Off-Grid System.

Abstract

The utilization of solar energy in Medan city has not been optimal, which is a case that requires a solution. This is due to the lack of understanding of the working concept and the factors influencing the efficiency of power generated by solar panels. The research conducted in the Medan City area, North Sumatra, aims to determine the performance of the monocrystalline off-grid solar panel conversion in response to weather fluctuations. Based on the study of solar panel performance, the analysis shows that the power generated is influenced by key variables such as voltage, current, power, and light intensity (lux). The voltage of the solar panel remains stable throughout the day, ranging from 11.00 V to 19.80 V, with the peak occurring at 1:00 PM. The current varies, from 0.25 A in the morning to 5.90 A during the day. The peak power is recorded at 1:00 PM, reaching 116.82 Watts, along with the highest voltage and current. The intensity of sunlight (lux) also affects power, with the peak lux of 50,000 occurring at 1:00 PM. Overall, the solar panel performs best between 12:00 PM and 2:00 PM, while the output power decreases in the morning and evening.

Downloads

References

H. Satria and S. Syafii, “Sistem Monitoring Online dan Analisa Performansi PLTS Rooftop Terhubung ke Grid PLN,” J. Rekayasa Elektr., vol. 14, no. 2, 2018, doi: 10.17529/jre.v14i2.11141.

E. Saputra, D. Purwanto, S. R. Rahim, and A. I. Bakhtiar, “PENINGKATAN PERFORMA PANEL SURYA DENGAN SISTEM PENDINGIN UNTUK MEREDUKSI PANAS PERMUKAAN,” Media Mesin Maj. Tek. Mesin, vol. 23, no. 1, 2022, doi: 10.23917/mesin.v23i1.16390.

M. Nurdiansyah, E. C. Sinurat, M. Bakri, I. Ahmad, and A. B. Prasetyo, “Sistem Kendali Rotasi Matahari Pada Panel Surya Berbasis Arduino UNO,” J. Tek. dan Sist. Komput., vol. 1, no. 2, 2020, doi: 10.33365/jtikom.v1i2.14.

H. Satria, R. Syah, N. A. Silviana, and Syafii, “Sensitivity of solar panel energy conversion at sunrise and sunset on three weather fluctuations in equatorial climate,” Int. J. Electr. Comput. Eng., vol. 13, no. 3, 2023, doi: 10.11591/ijece.v13i3.pp2449-2458.

M. Usman, “ANALISIS INTENSITAS CAHAYA TERHADAP ENERGI LISTRIK YANG DIHASILKAN PANEL SURYA,” Power Elektron. J. Orang Elektro, vol. 9, no. 2, 2020, doi: 10.30591/polektro.v9i2.2047.

S. Utami and A. Daud, “PENGARUH TEMPERATUR PANEL SURYA TERHADAP EFISIENSI PANEL SURYA,” J. Tek. Energi, vol. 11, no. 1, 2021, doi: 10.35313/energi.v11i1.2437.

P. Harahap, “Pengaruh Temperatur Permukaan Panel Surya Terhadap Daya Yang Dihasilkan Dari Berbagai Jenis Sel Surya,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 2, no. 2, 2020, doi: 10.30596/rele.v2i2.4420.

H. Satria, M. Mual Gunawan Lubis, and S. Muthia Putri, “Design of Household Electricity Protection and Monitoring Automation With IoT ESP32,” Andalasian Int. J. Appl. Sci. Eng. Technol., vol. 2, no. 03, 2022, doi: 10.25077/aijaset.v2i03.53.

B. H. Purwoto, J. Jatmiko, M. A. Fadilah, and I. F. Huda, “Efisiensi Penggunaan Panel Surya sebagai Sumber Energi Alternatif,” Emit. J. Tek. Elektro, vol. 18, no. 1, 2018, doi: 10.23917/emitor.v18i01.6251.

E. Ndzibah, G. Andrea Pinilla-De La Cruz, and A. Shamsuzzoha, “End of life analysis of solar photovoltaic panel: roadmap for developing economies,” Int. J. Energy Sect. Manag., vol. 16, no. 1, 2022, doi: 10.1108/IJESM-11-2020-0005.

M. Li, S. D. Widijatmoko, Z. Wang, and P. Hall, “A methodology to liberate critical metals in waste solar panel,” Appl. Energy, vol. 337, 2023, doi: 10.1016/j.apenergy.2023.120900.

K. Terashima, H. Sato, and T. Ikaga, “PV/T solar panel for supplying residential demands of heating/cooling and hot water with a lower environmental thermal load,” Energy Build., vol. 297, 2023, doi: 10.1016/j.enbuild.2023.113408.

A. Wagh, “Solar Panel Cleaning System,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 2, 2024, doi: 10.22214/ijraset.2024.58356.

M. Vimala, G. Ramadas, M. Perarasi, A. M. Manokar, and R. Sathyamurthy, “A Review of Different Types of Solar Cell Materials Employed in Bifacial Solar Photovoltaic Panel,” Energies, vol. 16, no. 8. 2023. doi: 10.3390/en16083605.

N. Shrestha and A. Zaman, “Decommissioning and Recycling of End-of-Life Photovoltaic Solar Panels in Western Australia,” Sustain., vol. 16, no. 2, 2024, doi: 10.3390/su16020526.

F. H. M. Noh et al., “Development of solar panel cleaning robot using arduino,” Indones. J. Electr. Eng. Comput. Sci., vol. 19, no. 3, 2020, doi: 10.11591/ijeecs.v19.i3.pp1245-1250.

I. Laabab, S. Ziani, and A. Benami, “Solar panels overheating protection: a review,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 29, no. 1. 2023. doi: 10.11591/ijeecs.v29.i1.pp49-55.

B. Budiyanto and H. Setiawan, “Analisa Perbandingan Kinerja Panel Surya Vertikal Dengan Panel Surya Fleksibel Pada Jenis Monocrystalline,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 4, no. 1, 2021, doi: 10.24853/resistor.4.1.77-86.

D. Hidayanti and G. Dewangga, “Rancang Bangun Pembangkit Hybrid Tenaga Angin dan Surya dengan Penggerak Otomatis pada Panel Surya,” Eksergi, vol. 15, no. 3, 2020, doi: 10.32497/eksergi.v15i3.1784.

M. Y. Puriza, W. Yandi, and A. Asmar, “Perbandingan Efisiensi Konversi Energi Panel Surya Tipe Polycrystaline dengan Panel Surya Monocrystaline Berbasis Arduino di Kota Pangkalpinang,” J. Ecotipe (Electronic, Control. Telecommun. Information, Power Eng., vol. 8, no. 1, 2021, doi: 10.33019/jurnalecotipe.v8i1.2034.

R. Dallaev, T. Pisarenko, N. Papež, and V. Holcman, “Overview of the Current State of Flexible Solar Panels and Photovoltaic Materials,” Materials, vol. 16, no. 17. 2023. doi: 10.3390/ma16175839.

J. A. Dhanraj et al., “An effective evaluation on fault detection in solar panels,” Energies, vol. 14, no. 22. 2021. doi: 10.3390/en14227770.

Solar.com, “Solar Panel Efficiency,” Solar.Com, vol. 4, no. 12, 2020.

A. El Hammoumi, S. Chtita, S. Motahhir, and A. El Ghzizal, “Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels,” Energy Reports, vol. 8. 2022. doi: 10.1016/j.egyr.2022.09.054.

B. O. Olorunfemi, O. A. Ogbolumani, and N. Nwulu, “Solar Panels Dirt Monitoring and Cleaning for Performance Improvement: A Systematic Review on Smart Systems,” Sustainability (Switzerland), vol. 14, no. 17. 2022. doi: 10.3390/su141710920.

Y. Xu, J. Li, Q. Tan, A. L. Peters, and C. Yang, “Global status of recycling waste solar panels: A review,” Waste Management, vol. 75. 2018. doi: 10.1016/j.wasman.2018.01.036.

M. S. Chowdhury et al., “An overview of solar photovoltaic panels’ end-of-life material recycling,” Energy Strategy Reviews, vol. 27. 2020. doi: 10.1016/j.esr.2019.100431.

Downloads

Published

2025-07-03

How to Cite

[1]
R. Wando Pratama Siregar and H. Satria, “Analisis Monitoring Dampak Pengukuran Variabilitas Suhu Lingkungan Solar Panel Off-Grid Pada Model Panel Monocrystalline ”, RJTI, vol. 4, no. 2, pp. 199–205, Jul. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.