Smart Farming: Optimalisasi Produksi Telur Ayam Petelur menggunakan Sistem Cerdas Monitoring Suhu dan Kelembaban Kandang Berbasis IoT
DOI:
https://doi.org/10.30606/rjti.v4i1.3264Keywords:
Smart farming, IoT, laying hens, egg production, automated systemsAbstract
Egg production of laying hens is influenced by various factors, including temperature, humidity, and the quality of the cage environment. The main problem in this study is the fluctuation of production due to changes in environmental conditions that are not optimal. This study aims to develop and implement a smart farming system based on the internet of things (IoT) that is able to optimize egg production of laying hens through automatic monitoring of cage temperature and humidity. The methods used include needs analysis, design, implementation and testing. The results showed that the accuracy of the system reached 80% which could maintain the cage environmental conditions within the optimal range, so that egg production increased from an average of 383.67 eggs per month to 390.33 eggs per month.
Downloads
References
BPS Kabupaten Pesawaran, “Produksi Telur menurut Kecamatan dan Jenisnya di Kabupaten Pesawaran 2020-2022,” BPS Kabupaten Pesawaran. Accessed: Mar. 16, 2025. [Online]. Available: https://pesawarankab.bps.go.id/indicator/24/207/1/produksi-telur-menurut-kecamatan-dan-jenisnya-di-kabupaten-pesawaran.html
Kementan, “BERITA NEGARA REPUBLIK INDONESIA,” Jakarta, Feb. 2014. [Online]. Available: www.djpp.kemenkumham.go.id
Rasyaf M, Beteranak Ayam Petelur. Jakarta: Penebar Swadaya, 2005.
Suyudi, Betty Rofatin, and Hendar Nuryaman, “Inovasi Pertanian Berkelanjutan: Peluang dan Arah Kebijakan Ketahanan Pangan di Era New Normal,” in Prosiding Seminar Nasional Hasil Penelitian Agribisnis, Ciamis: 2022, May 2022, pp. 33–346.
Nurdayati, B. Sudarmanto, W. Wahidah Mubarokah, E. Purwono, L. Makmun, and M. Akabrrizki, “Model Pendampingan Generasi Millennial Sektor Pertanian Berkelanjutan melalui Optimalisasi Pemberdayaan Asset Social Movement menghadapi Era Pertanian Cerdas Digital 4.0 (Digital Smart Farming 4.0) Mentoring Model for the Millennial Generation in the Sustainable Agriculture Sector through the Optimization of Empowering Social Movement Assets in Facing the Digital Smart Farming 4.0 Era,” 2024. doi: https://doi.org/10.36626/jppp.v21i1.1196.
E. Supriyanto, A. Hasan, H. Arif Bramantyo, and T. Pramuji, “Implementasi Sistem Pemantauan Dan Pengendalian Suhu Kandang Ayam Tertutup Berbasis Iot Di Kelurahan Wonolopo Kecamatan Mijen Kota Semarang,” JURNAL ABDI : Media Pengabdian Kepada masyarakat, vol. 10, no. 2, pp. 169–177, 2025, doi: https://doi.org/10.26740/abdi.v10i2.35537.
R. Budiarto, N. Kholis Gunawan, and B. Ari Nugroho, “Smart Chicken Farming: Monitoring System for Temperature, Ammonia Levels, Feed in Chicken Farms,” IOP Conf Ser Mater Sci Eng, vol. 852, no. 1, p. 012175, Jul. 2020, doi: 10.1088/1757-899X/852/1/012175.
H. Mansor, A. Nor Azlin, T. S. Gunawan, M. Md Kamal, and A. Z. Hashim, “Development of Smart Chicken Poultry Farm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 10, no. 2, p. 498, May 2018, doi: 10.11591/ijeecs.v10.i2.pp498-505.
T. Malini, D. L. Aswath, R. Abhishek, R. Kirubhakaran, and S. Anandhamurugan, “IoT Based Smart Poultry Farm Monitoring,” in 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, Mar. 2023, pp. 13–18. doi: 10.1109/ICACCS57279.2023.10112870.
I. V Paputungan et al., “Temperature and Humidity Monitoring System in Broiler Poultry Farm,” IOP Conf Ser Mater Sci Eng, vol. 803, no. 1, p. 012010, Apr. 2020, doi: 10.1088/1757-899X/803/1/012010.
A. A. Masriwilaga, T. A. J. M. Al-hadi, A. Subagja, and S. Septiana, “Monitoring System for Broiler Chicken Farms Based on Internet of Things (IoT),” Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan, vol. 7, no. 1, pp. 1–13, Apr. 2019, doi: 10.34010/telekontran.v7i1.1641.
B. Ghazal, K. Al-Khatib, and K. Chahine, “A Poultry Farming Control System Using a ZigBee-based Wireless Sensor Network,” International Journal of Control and Automation, vol. 10, no. 9, pp. 191–198, Sep. 2017, doi: 10.14257/ijca.2017.10.9.16.
A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit, vol. 91, pp. 216–231, Jul. 2019, doi: 10.1016/j.patcog.2019.02.023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Panji Andhika Pratomo, Kurniawan Saputra, Dita Novita Sari, Dkk

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Riau Jurnal Teknik Informatika provides open access to anyone so that the information and findings in these articles are useful for everyone. This journal's article content can be accessed and downloaded for free, free of charge, following the creative commons license used.
Riau Jurnal Teknik Informatika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.