IMPLEMENTASI DATA MINING PREDIKSI KELULUSAN SISWA MENGGUNAKAN METODE DECISION TREE PADA SMK IPTEK TANGSEL
DOI:
https://doi.org/10.30606/rjti.v4i1.3267Keywords:
Data mining, Decision tree, Student Graduation Prediction, Rapid miner.Abstract
Vocational High School (SMK) is a formal educational institution that prepares its graduates for the world of work. However, SMK Iptek Tangsel faces challenges in optimizing student data and overcoming labor shortages in the field of education administration. To overcome this problem, this study applies a prediction system using a data mining technique with the decision tree method. Aims to improve the accuracy of student graduation predictions. The methodology of this study adopts a quantitative approach with structured steps, including observation, interviews, data collection, and documentation. The results showed that the accuracy of Rapid miners in motorcycle and multimedia business engineering reached 98.49%, while in hospitality and accounting accommodation reached 99.05%. This graduation prediction system helps schools identify students at risk of not graduating and who are at potential to graduate, optimize data management, and enable appropriate interventions. This research makes a significant contribution to improving the decision-making process in the field of education through the use of data mining technology. Thus, the graduation prediction system can be an effective tool in supporting data management and increasing student graduation in vocational schools.
Downloads
References
Adinugroho, S., & Yuita, A. S. (2018). Implementasi Data mining Menggunakan WEKA (1st ed.). UB Press.
Ali Ma, F., Pratama, A., Sholihin, I., & Rizki Rinaldi, A. (2021). Penerapan Model Prediksi Menggunakan Algoritma C.45 Untuk Prediksi Kelulusan Siswa SMK Wahidin. Jurnal Data Science & Informatika, 1(1), 16–20.
Arhami, M., & Nasir, M. (2020). Data mining Algoritma dan Implementasi. ANDI.
Arthasia, M. (2022). IMPLEMENTASI DATA MINING UNTUK PREDIKSI PENJUALAN SOUVENIR MENGGUNAKAN ALGORITMA C4.5. Skripsi.
Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1), 60–64. https://doi.org/10.18196/st.211211
Buulolo, E. (2020). Data mining Untuk Perguruan Tinggi (Pertama). CV BUDI UTAMA.
Fibo, M., Ikhbal, D., & Kurniadi, D. (2021). Menentukan Penjurusan Siswa Dengan Menggunakan Metode Decision tree Algoritma C4.5 (Studi Kasus : SMA Negeri 2 Padang). JAVIT (Jurnal Vokasi Informatika), 1(3). http://javit.ppj.unp.ac.id
Irawan, M. D., & Simargolang, S. A. (2018). Implementasi E-Arsip Pada Program Studi Teknik Informatika. Jurnal Teknologi Informasi, 2(1), 67. https://doi.org/10.36294/jurti.v2i1.411
Joko, S. (2019). Data mining : Algoritma dan Implementasi dengan Program an PHP (1st ed.). PT Elex Media Komputindo.
Kuriawan, A. (2019). Implementasi Data mining Algoritma C4.5 Untuk Memprediksi Kelulusan Uji Kompetensi Smk Teknik Komputer Dan Jaringan (Tkj) (Study Kasus: Smk Pembangunan Daerah Lubuk Pakam). Jurnal Majalah Ilmiah Informasi Dan Teknologi Ilmiah (INTI), 7(1), 5–13. http://ejurnal.stmik-udidarma.ac.id/index.php/inti/article/view/1801
Mahmud, R., & Hartanto, A. (2020). Penerapan Data mining Rekomendasi Laptop Menggunakan Algoritma Apriori. Juisi, 06(02), 21–30.
Merawati, D., & Rino. (2019). Penerapan data mining penentu minat Dan bakat siswa Smk dengan metode C4 . 5. JURNAL ALGOR, 1(1).
Muslim, M. A., Prasetiyo, B., M, E. L. H., H, A. J., irqotussa’adah, R, S. H., & Nurzahputra, A. (2019). DATA MINING ALGORITMA C4.5 (E. Listiana & N. Cahyani (eds.); 1st ed.).
Mustika, Ardilla, Y., Manuhutu, A., Ahmad, N., Hasbi, I., Guntoro, Manuhutu, A. M., Ridwan, M., & Hozairi. (2021). Data mining dan Aplikasinya (N. Risnawati (ed.); 1st ed.). Widina Bhakti Persada Bandung.
Normah, Rifai, B., Vambudi, S., & Maulana, R. (2022). Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE. Jurnal Teknik Komputer AMIK BSI, 8(2), 174–180. https://doi.org/10.31294/jtk.v4i2
Putri, R. E. (2021). Implementasi data mining untuk prediksi efektivitas pada mesin injection menggunakan algoritma c4. 5 studi kasus: pt. tridaya artaguna santara. Skripsi, 5.
https://repository.uinjkt.ac.id/dspace/handle/123456789/57846%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/57846/1/RIZKY EVITA PUTRI-FST.pdf
Rizmayanti, A. I., Hidayati, N., Nugraha, F. S., & Gata, W. (2021). Penerapan Data mining Untuk Memprediksi Kompetensi Siswa Menggunakan Metode Decission Tree ( Studi Kasus Smk Multicomp Depok ). Swabumi, 9(1), 9–18. https://doi.org/10.31294/swabumi.v9i1.8363
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Suryaningrat, Sartika Lina Mulani Sitio, Ayni Suwarno Herry

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Riau Jurnal Teknik Informatika provides open access to anyone so that the information and findings in these articles are useful for everyone. This journal's article content can be accessed and downloaded for free, free of charge, following the creative commons license used.
Riau Jurnal Teknik Informatika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.