Penerapan Collaborative Filtering untuk Sistem Rekomendasi Film
DOI:
https://doi.org/10.30606/rjti.v4i1.3248Keywords:
Collaborative Filtering, Rekomendasi Film, User-Based, Item-Based, Metrik EvaluasiAbstract
Sistem rekomendasi berperan penting dalam membantu pengguna menemukan konten yang relevan di tengah banyaknya informasi yang tersedia. Penelitian ini mengimplementasikan dan mengevaluasi metode User-Based dan Item-Based Collaborative Filtering untuk sistem rekomendasi film menggunakan dataset MovieLens 100K. Evaluasi dilakukan menggunakan RMSE, MAE, Precision, Recall, dan F1-Score untuk mengukur akurasi prediksi dan relevansi rekomendasi. Hasil penelitian menunjukkan bahwa metode Item-Based Collaborative Filtering memiliki performa lebih baik dibandingkan User-Based Collaborative Filtering dalam hal akurasi prediksi dan relevansi rekomendasi. Keunggulan ini disebabkan oleh stabilitas hubungan antar item dibandingkan preferensi pengguna yang lebih dinamis. Meskipun efektif, metode ini masih menghadapi tantangan seperti sparsity dan keterbatasan jumlah rating pada beberapa film. Penelitian selanjutnya dapat mengeksplorasi pendekatan hibrida yang menggabungkan Collaborative Filtering dengan deep learning atau content-based filtering untuk meningkatkan kualitas
Downloads
References
Wang, Z. (2023). “A content-based collaborative filtering algorithm for movies and TVS recommendation.” Applied and Computational Engineering, 15, pp.83-91. Available: https://www.ewadirect.com/proceedings/ace/article/view/4561
Yadav, A., Srivastava, G., dan Kumar, S. (2024). “A Hybrid Approach to Movie Recommendation System.” Journal of Management and Service Science, 4(1), pp.1-14. Available: https://jmss.a2zjournals.com/index.php/mss/article/view/62
Fitriyeh, F., Haqqi, N., Choiriyah, L.M., dan Ifada, N. (2024). “Weighting impact on hybrid user-based and item-based method for movie recommendation system.” Jurnal CoSciTech (Computer Science and Information Technology), 5(3), pp.516-525. Available: https://ejurnal.umri.ac.id/index.php/coscitech/article/view/7637
Nagapraveena, T., Midhun, A., Rohit, dan Pragna, B. (2024). “Movie Recommendation System Using Collaborative Filtering.” International Journal of Information Technology and Computer Engineering, 12(2), pp.426-431. Available: https://ijitce.org/index.php/ijitce/article/view/502
Ifada, N., Rahman, T.F., dan Sophan, M.K. (2020). “Comparing Collaborative Filtering and Hybrid based Approaches for Movie Recommendation.” Proceedings of the 6th Information Technology International Seminar (ITIS), Surabaya, pp.219-223. Available: https://www.researchgate.net/publication/348673145_Comparing_Collaborative_Filtering_and_Hybrid_based_Approaches_for_Movie_Recommendation
Barman, S.D., Hasan, M., dan Roy, F. (2019). “A genre-based item-item collaborative filtering: facing the cold-start problem.” Proceedings of the 2019 8th International Conference on Software and Computer Applications, Penang, Malaysia, pp.258-262. Available: https://www.researchgate.net/publication/333075691_A_Genre-Based_Item-Item_Collaborative_Filtering_Facing_the_Cold-Start_Problem
Kanmani, R.S.A., Surendiran, B., dan Ibrahim, S.P.S. (2021). “Recency augmented hybrid collaborative movie recommendation system.” International Journal of Information Technology and Management, 13(5), pp.1829-1836. Available: https://www.researchgate.net/publication/354057257_Recency_augmented_hybrid_collaborative_movie_recommendation_system
Nudrat, S., Khan, H.U., Iqbal, S., Talha, M.M., Alarfaj, F.K., dan Almusallam, N. (2022). “Users’ Rating Predictions Using Collaborating Filtering Based on Users and Items Similarity Measures.” Computational Intelligence and Neuroscience, 2022(1), p.2347641. Available: https://onlinelibrary.wiley.com/doi/10.1155/2022/2347641
Harper, F. dan Konstan, J. (2015). “The MovieLens datasets: History and context.” ACM Transactions on Interactive Intelligent Systems, 5(4), pp.1-19. Available: https://files.grouplens.org/papers/harper-tiis2015.pdf
Fajriansyah, M., Adikara, P.P., dan Widodo, A.W. (2021). “Sistem Rekomendasi Film Menggunakan Content Based Filtering.” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(6), pp.2188-2199. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9163
Lubis, Y.I., Napitupulu, D.J., dan Dharma, A.S. (2020). “Implementasi Metode Hybrid Filtering (Collaborative dan Content-based) untuk Sistem Rekomendasi Pariwisata.” Proceedings of the 12th Conference on Information Technology and Electrical Engineering, Yogyakarta, Indonesia, pp.28-35. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiz14PGp6WMAxVSS2cHHUgUNDIQFnoECBkQAQ&url=https%3A%2F%2Fcitee.ft.ugm.ac.id%2Fdownload51.php%3Ff%3DTI-5%2520-%2520Implementasi%2520Metode%2520Hybrid%2520Filtering.pdf&usg=AOvVaw1_nQuCFyFEr5pxS7KDrbZH&opi=89978449
Widiyaningtyas, T., Hidayah, I., dan Adji, T.B. (2021). “User profile correlation-based similarity (UPCSim) algorithm in movie recommendation system.” Journal of Big Data, 8(1), pp.1-19. Available: https://www.researchgate.net/publication/350473829_User_profile_correlation-based_similarity_UPCSim_algorithm_in_movie_recommendation_system
Jaja, V.L., Susanto, B., dan Sasongko, L.R. (2020). “Penerapan metode item-based collaborative filtering untuk sistem rekomendasi data MovieLens.” d'Cartesian: Jurnal Matematika dan Aplikasi, 9(2), pp.78-83. Available: https://ejournal.unsrat.ac.id/v3/index.php/decartesian/article/view/28274
Tarigan, V.T., dan Yusupa, A. (2024). “Perbandingan Algoritma Machine Learning dalam Analisis Sentimen Mobil Listrik di Indonesia pada Media Sosial Twitter/X.” Jurnal Informatika Polinema, 10(4), pp.479-490. Available: https://jurnal.polinema.ac.id/index.php/jip/article/view/5130
Tarigan, V.T. (2023). “Penerapan metode double exponential smoothing untuk memprediksi jumlah penjualan springbed di PT. Masindo Karya Prima.” Jurnal Informatika Polinema, 9(3), pp.339-346. Available: https://jurnal.polinema.ac.id/index.php/jip/article/view/3924
Tarigan, V.T., dan Yusupa, A. (2023). “Pembuatan aplikasi data mining untuk memprediksi masa studi mahasiswa menggunakan algoritma Naive Bayes.” Jurnal Informatika Universitas Labuhanbatu, 11(1), pp.54-62. Available: https://jurnal.ulb.ac.id/index.php/informatika/article/view/3847/0
Komansilan, R., Tarigan, V., dan Yusupa, A. (2024). “Analisis perbandingan metode Trend Moment dan Regresi Linear untuk meramal harga saham Bank BRI.” Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, 7(1), pp.24-32. Available: https://www.researchgate.net/publication/378997838_Analisis_Perbandingan_Metode_Trend_Moment_dan_Regresi_Linear_Untuk_Meramal_Harga_Saham_Bank_BRI
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rachel Pangemanan, Nasya Emanuel Soekamto, Glerio Adrian, Dkk

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Riau Jurnal Teknik Informatika provides open access to anyone so that the information and findings in these articles are useful for everyone. This journal's article content can be accessed and downloaded for free, free of charge, following the creative commons license used.
Riau Jurnal Teknik Informatika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.