Penerapan Collaborative Filtering untuk Sistem Rekomendasi Film

Authors

  • Rachel Pangemanan Universitas Sam Ratulangi
  • Nasya Emanuel Soekamto Universitas Sam Ratulangi
  • Glerio Adrian Universitas Sam Ratulangi
  • Ade Yusupa Universitas Sam Ratulangi
  • Victor Tarigan Universitas Sam Ratulangi

DOI:

https://doi.org/10.30606/rjti.v4i1.3248

Keywords:

Collaborative Filtering, Rekomendasi Film, User-Based, Item-Based, Metrik Evaluasi

Abstract

Sistem rekomendasi berperan penting dalam membantu pengguna menemukan konten yang relevan di tengah banyaknya informasi yang tersedia. Penelitian ini mengimplementasikan dan mengevaluasi metode User-Based dan Item-Based Collaborative Filtering untuk sistem rekomendasi film menggunakan dataset MovieLens 100K. Evaluasi dilakukan menggunakan RMSE, MAE, Precision, Recall, dan F1-Score untuk mengukur akurasi prediksi dan relevansi rekomendasi. Hasil penelitian menunjukkan bahwa metode Item-Based Collaborative Filtering memiliki performa lebih baik dibandingkan User-Based Collaborative Filtering dalam hal akurasi prediksi dan relevansi rekomendasi. Keunggulan ini disebabkan oleh stabilitas hubungan antar item dibandingkan preferensi pengguna yang lebih dinamis. Meskipun efektif, metode ini masih menghadapi tantangan seperti sparsity dan keterbatasan jumlah rating pada beberapa film. Penelitian selanjutnya dapat mengeksplorasi pendekatan hibrida yang menggabungkan Collaborative Filtering dengan deep learning atau content-based filtering untuk meningkatkan kualitas

Downloads

References

Wang, Z. (2023). “A content-based collaborative filtering algorithm for movies and TVS recommendation.” Applied and Computational Engineering, 15, pp.83-91. Available: https://www.ewadirect.com/proceedings/ace/article/view/4561

Yadav, A., Srivastava, G., dan Kumar, S. (2024). “A Hybrid Approach to Movie Recommendation System.” Journal of Management and Service Science, 4(1), pp.1-14. Available: https://jmss.a2zjournals.com/index.php/mss/article/view/62

Fitriyeh, F., Haqqi, N., Choiriyah, L.M., dan Ifada, N. (2024). “Weighting impact on hybrid user-based and item-based method for movie recommendation system.” Jurnal CoSciTech (Computer Science and Information Technology), 5(3), pp.516-525. Available: https://ejurnal.umri.ac.id/index.php/coscitech/article/view/7637

Nagapraveena, T., Midhun, A., Rohit, dan Pragna, B. (2024). “Movie Recommendation System Using Collaborative Filtering.” International Journal of Information Technology and Computer Engineering, 12(2), pp.426-431. Available: https://ijitce.org/index.php/ijitce/article/view/502

Ifada, N., Rahman, T.F., dan Sophan, M.K. (2020). “Comparing Collaborative Filtering and Hybrid based Approaches for Movie Recommendation.” Proceedings of the 6th Information Technology International Seminar (ITIS), Surabaya, pp.219-223. Available: https://www.researchgate.net/publication/348673145_Comparing_Collaborative_Filtering_and_Hybrid_based_Approaches_for_Movie_Recommendation

Barman, S.D., Hasan, M., dan Roy, F. (2019). “A genre-based item-item collaborative filtering: facing the cold-start problem.” Proceedings of the 2019 8th International Conference on Software and Computer Applications, Penang, Malaysia, pp.258-262. Available: https://www.researchgate.net/publication/333075691_A_Genre-Based_Item-Item_Collaborative_Filtering_Facing_the_Cold-Start_Problem

Kanmani, R.S.A., Surendiran, B., dan Ibrahim, S.P.S. (2021). “Recency augmented hybrid collaborative movie recommendation system.” International Journal of Information Technology and Management, 13(5), pp.1829-1836. Available: https://www.researchgate.net/publication/354057257_Recency_augmented_hybrid_collaborative_movie_recommendation_system

Nudrat, S., Khan, H.U., Iqbal, S., Talha, M.M., Alarfaj, F.K., dan Almusallam, N. (2022). “Users’ Rating Predictions Using Collaborating Filtering Based on Users and Items Similarity Measures.” Computational Intelligence and Neuroscience, 2022(1), p.2347641. Available: https://onlinelibrary.wiley.com/doi/10.1155/2022/2347641

Harper, F. dan Konstan, J. (2015). “The MovieLens datasets: History and context.” ACM Transactions on Interactive Intelligent Systems, 5(4), pp.1-19. Available: https://files.grouplens.org/papers/harper-tiis2015.pdf

Fajriansyah, M., Adikara, P.P., dan Widodo, A.W. (2021). “Sistem Rekomendasi Film Menggunakan Content Based Filtering.” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(6), pp.2188-2199. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/9163

Lubis, Y.I., Napitupulu, D.J., dan Dharma, A.S. (2020). “Implementasi Metode Hybrid Filtering (Collaborative dan Content-based) untuk Sistem Rekomendasi Pariwisata.” Proceedings of the 12th Conference on Information Technology and Electrical Engineering, Yogyakarta, Indonesia, pp.28-35. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiz14PGp6WMAxVSS2cHHUgUNDIQFnoECBkQAQ&url=https%3A%2F%2Fcitee.ft.ugm.ac.id%2Fdownload51.php%3Ff%3DTI-5%2520-%2520Implementasi%2520Metode%2520Hybrid%2520Filtering.pdf&usg=AOvVaw1_nQuCFyFEr5pxS7KDrbZH&opi=89978449

Widiyaningtyas, T., Hidayah, I., dan Adji, T.B. (2021). “User profile correlation-based similarity (UPCSim) algorithm in movie recommendation system.” Journal of Big Data, 8(1), pp.1-19. Available: https://www.researchgate.net/publication/350473829_User_profile_correlation-based_similarity_UPCSim_algorithm_in_movie_recommendation_system

Jaja, V.L., Susanto, B., dan Sasongko, L.R. (2020). “Penerapan metode item-based collaborative filtering untuk sistem rekomendasi data MovieLens.” d'Cartesian: Jurnal Matematika dan Aplikasi, 9(2), pp.78-83. Available: https://ejournal.unsrat.ac.id/v3/index.php/decartesian/article/view/28274

Tarigan, V.T., dan Yusupa, A. (2024). “Perbandingan Algoritma Machine Learning dalam Analisis Sentimen Mobil Listrik di Indonesia pada Media Sosial Twitter/X.” Jurnal Informatika Polinema, 10(4), pp.479-490. Available: https://jurnal.polinema.ac.id/index.php/jip/article/view/5130

Tarigan, V.T. (2023). “Penerapan metode double exponential smoothing untuk memprediksi jumlah penjualan springbed di PT. Masindo Karya Prima.” Jurnal Informatika Polinema, 9(3), pp.339-346. Available: https://jurnal.polinema.ac.id/index.php/jip/article/view/3924

Tarigan, V.T., dan Yusupa, A. (2023). “Pembuatan aplikasi data mining untuk memprediksi masa studi mahasiswa menggunakan algoritma Naive Bayes.” Jurnal Informatika Universitas Labuhanbatu, 11(1), pp.54-62. Available: https://jurnal.ulb.ac.id/index.php/informatika/article/view/3847/0

Komansilan, R., Tarigan, V., dan Yusupa, A. (2024). “Analisis perbandingan metode Trend Moment dan Regresi Linear untuk meramal harga saham Bank BRI.” Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, 7(1), pp.24-32. Available: https://www.researchgate.net/publication/378997838_Analisis_Perbandingan_Metode_Trend_Moment_dan_Regresi_Linear_Untuk_Meramal_Harga_Saham_Bank_BRI

Downloads

Published

2025-03-31

How to Cite

[1]
R. Pangemanan, N. E. Soekamto, G. Adrian, A. Yusupa, and V. Tarigan, “Penerapan Collaborative Filtering untuk Sistem Rekomendasi Film”, RJTI, vol. 4, no. 1, pp. 8–17, Mar. 2025.

Issue

Section

Articles

Most read articles by the same author(s)