IMPLEMENTATION OF HUE SATURATION INTENSITY (HSI) COLOR SPACE TRANSFORMATION ALGORITHM WITH RED, GREEN, BLUE (RGB) COLOR BRIGHTNESS IN ASSESSING TOMATO FRUIT MATURITY

Authors

  • Budi Yanto` Universitas Pasir Pengaraian, Indonesia, Riau
  • Maria Angela Kartawidjaja Department of Electrical Engineering, Atma Jaya Katholic University Indonesia
  • Ronald Sukwadi Department of Electrical Engineering, Atma Jaya Katholic University Indonesia
  • Marsellinus Bachtiar Department of Electrical Engineering, Atma Jaya Katholic University Indonesia

DOI:

https://doi.org/10.30606/rjocs.v9i2.2428

Keywords:

Hue Saturation Intensity (HSI) Algorithm, Red Green Blue (RGB), Tomato ripeness, Python

Abstract

Tomatoes, as a type of vegetable or fruit, are often susceptible to damage, making handling them a complex challenge. Distinguishing between fresh and damaged tomatoes is very important, considering the significant impact on nutritional value and economic aspects. Traditional approaches via visual inspection have proven to be less efficient and inconsistent in their detection accuracy. To overcome this challenge, the use of images is a vital solution for distinguishing ripe, half-ripe and unripe tomatoes. In this context, HSI (Hue, Saturation, Intensity) calculations are applied to measure RGB color and room transformations. Images are extracted in jpg format, saved as training data, and this method is implemented using the Python programming language and GUI interface design in MATLAB. The research results show the HSI value for each class, with the ripe tomato class having an average hue of 0.0051 – 0.026, saturation 0.1862 – 0.3291, and intensity 0.0975 – 0.7522. Half-ripe tomatoes have hue 0.0208 – 0.0848, saturation 0.1346 – 0.5746, and intensity 0.1056 – 0.4714, while immature tomatoes have hue 0.0174 – 0.0689, saturation 0.0474 – 0.2072, and intensity 0.0595 – 0.3203. The integration of the HSI algorithm steps with the RGB color space provides an additional dimension to color analysis, which has the potential to increase the accuracy of tomato ripeness detection.

Downloads

Download data is not yet available.

References

C. Wibowo, R. Wicaksono, P. Haryanti, D. M. Irawan, S. B. Sulistyo, and A. Fatoni, “Application of Starch-based Edible Coating on Tomato and Its Effect during Storage,” in IOP Conference Series: Earth and Environmental Science, 2023, vol. 1155, no. 1. doi: 10.1088/1755-1315/1155/1/012014.

K. L. Kamminga, A. L. Koppel, D. A. Herbert, and T. P. Kuhar, “Biology and management of the green stink bug,” J. Integr. Pest Manag., vol. 3, no. 3, 2012, doi: 10.1603/IPM12006.

R. Paraguison-Alili, R. M. Dela Cruz, E. S. Romero, H. M. Cruz, C. O. Padilla, and F. L. Porciuncula, “Molecular tools in monitoring the outset of tomato leaf curl virus (ToLCV) Transmission in the Philippines,” Curr. Plant Biol., vol. 24, 2020, doi: 10.1016/j.cpb.2020.100169.

R. Pratama et al., “Tomato Fruit Detection Detection Based on Color Features Using His Color Space Transformation Method,” J. Inform. dan Komputer) p-ISSN, vol. 2, no. 2, 2019.

D. Ayuningtyas, E. Suryani, and W. Wiharto, “Identification of Tomato Maturity Based on HIS Color Space Using the K-Nearest Neighbour Method,” 2021. doi: 10.1109/ICAICST53116.2021.9497843.

A. S. Hayat, M. Syukri, and S. Sakir, “Identification of Ripe Levels in Plantain Fruits Using Hue Saturation Intensity (HSI) Color Space Transformation Method,” Tekper J. Teknol. dan Manaj. Ind. Pertan., vol. 2, no. 1, 2021, doi: 10.33772/tekper.v2i1.17291.

A. I. Thoriq, M. H. Zuhri, P. Purwanto, P. Pujiono, and H. A. Santoso, “Classification of Banana Maturity Levels Based on Skin Image with HSI Color Space Transformation Features Using the K-NN Method,” J. Dev. Res., vol. 6, no. 1, 2022, doi: 10.28926/jdr.v6i1.200.

B. Yanto, J. Jufri, A. Lubis, B. H. Hayadi, and E. Armita, NST, “Klarifikasi Kematangan Buah Nanas Dengan Ruang Warna Hue Saturation Intensity (Hsi),” INOVTEK Polbeng - Seri Inform., vol. 6, no. 1, p. 135, 2021, doi: 10.35314/isi.v6i1.1882.

A. Wibowo, D. M. C. Hermanto, K. I. Lestari, and H. Wijoyo, “Deteksi Kematangan Buah Jambu Kristal Berdasarkan Fitur Warna Menggunakan Metode Transformasi Ruang Warna Hsv (Hue Saturation Value) Dan K-Nearest Neighbor,” INCODING J. Informatics Comput. Sci. Eng., vol. 1, no. 2, 2021, doi: 10.34007/incoding.v2i1.131.

F. Aprilliani, D. Atmiasih, and A. Ristiono, “THE EVALUATION OF AVOCADO (Persea americana Mill.) MATURITY LEVEL USING IMAGE PROCESSING TECHNOLOGY,” J. Penelit. Pascapanen Pertan., vol. 18, no. 1, 2021, doi: 10.21082/jpasca.v18n1.2021.1-8.

F. Putra and T. Rizaldi, “Application of Color Sensor in the Determination of Tomato Fruit Ripeness (Solanum Lycopersicum, L) in Gravitation Type Fruit Sorting Tool (Gravitation Type),” Indones. J. Agric. Res., vol. 2, no. 1, 2019, doi: 10.32734/injar.v2i1.862.

Y. Li et al., “Method for wheatear counting and yield predicting based on image of wheatear population in field,” Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng., vol. 34, no. 21, 2018, doi: 10.11975/j.issn.1002-6819.2018.21.022.

X. Yang, D. Zhu, R. Yang, X. Zuo, W. Xie, and Z. Fu, “Method for extracting UAV RGB image information based on matching point cloud and HSI color component,” Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng., vol. 37, no. 22, 2021, doi: 10.11975/j.issn.1002-6819.2021.22.034.

M. Kamiyama and A. Taguchi, “Color conversion formula with saturation correction from HSI color space to RGB color space,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E104A, no. 7, 2021, doi: 10.1587/transfun.2020EAL2087.

B. Yanto, J. Jufri, A. Lubis, B. H. Hayadi, and E. Armita, NST, “KLARIFIKASI KEMATANGAN BUAH NANAS DENGAN RUANG WARNA HUE SATURATION INTENSITY (HSI),” INOVTEK Polbeng - Seri Inform., vol. 6, no. 1, 2021, doi: 10.35314/isi.v6i1.1882.

Z. Zhang and J. Fan, “Circular Histogram Thresholding Method Based on S-component Exponential Weighted H-component,” Jisuanji Gongcheng/Computer Eng., vol. 48, no. 10, 2022, doi: 10.19678/j.issn.1000-3428.0062899.

C. Dewi, A. Santoso, I. Indriati, N. A. Dewi, and Y. K. Arbawa, “Evaluasi Performasi Ruang Warna pada Klasifikasi Diabetic Retinophaty Menggunakan Convolution Neural Network,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, 2021, doi: 10.25126/jtiik.2021834459.

B. Yanto, E. Rouza, L. Fimawahib, B. H. Hayadi, and R. R. Pratama, “Penerapan Algoritma Deep Learning Convolutional Neural Network Dalam Menentukan Kematangan Buah Jeruk Manis Berdasarkan Citra Red Green Blue (RGB),” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 1, 2023, doi: 10.25126/jtiik.20231015695.

R. S. Raghavendra et al., “Deep Learning Based Dual Channel Banana Grading System Using Convolution Neural Network,” J. Food Qual., vol. 2022, 2022, doi: 10.1155/2022/6050284.

M. Fahmi Wibawa, M. A. Rahman, and A. W. Widodo, “Penerapan Ruang Warna HSV dan Ekstraksi Fitur Tekstur Local Binary Pattern untuk Tingkat Kematangan Sangrai Biji Kopi,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 7, 2021.

Y. Hendrawan, A. Amini, D. M. Maharani, and S. M. Sutan, “Intelligent non-invasive sensing method in identifying coconut (coco nucifera var. ebunea) ripeness using computer vision and artificial neural network,” Pertanika J. Sci. Technol., vol. 27, no. 3, 2019.

T. H. Nasution, M. Rumansa, and H. Lukman Adlin, “Designing the quality of coffee bean detection application using Hue Saturation Intensity,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 648, no. 1. doi: 10.1088/1757-899X/648/1/012036.

S. Aini, I. G. P. S. Wijaya, and G. W. Wiriasto, “Klasifikasi Kesegaran Buah Apel Berdasarkan Ekstraksi Fitur Warna Dan Tekstur Menggunakan Gray Level Co-Occurrence Matrix Dan Algoritma K-Nearest Neighbor,” J. Tek. Elektro, vol. 16, 2018.

V. Sudha and T. R. Ganeshbabu, “A convolutional neural network classifier VGG-19 architecture for lesion detection and grading in diabetic retinopathy based on deep learning,” Comput. Mater. Contin., vol. 66, no. 1, 2021, doi: 10.32604/cmc.2020.012008.

S. Zhi, Y. Cui, J. Deng, and W. Du, “An FPGA-based simple RGB-HSI space conversion algorithm for hardware image processing,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3026189.

Additional Files

Published

30-07-2023

How to Cite

[1]
B. Yanto`, Maria Angela Kartawidjaja, Ronald Sukwadi, and Marsellinus Bachtiar, “IMPLEMENTATION OF HUE SATURATION INTENSITY (HSI) COLOR SPACE TRANSFORMATION ALGORITHM WITH RED, GREEN, BLUE (RGB) COLOR BRIGHTNESS IN ASSESSING TOMATO FRUIT MATURITY ”, RJOCS , vol. 9, no. 2, pp. 167–178, Jul. 2023.