Analisa Visualisasi Data Penjualan dan Tingkat Kepuasan Penjualan Menggunakan Platform Lookerstudio

Authors

  • Zirhan Arfandi Universitas Pasir Pengaraian
  • Budi Yanto Universitas Pasir Pengaraian
  • Khairul Sabri Universitas Pasir Pengaraian, Riau, Indonesia
  • Yulfita Aini Universitas Pasir Pengaraian, Riau, Indonesia
  • Adyanata Lubis Universitas Rokania, Riau, Indonesia

DOI:

https://doi.org/10.30606/rjocs.v10i1.2402

Keywords:

Business Intelligence, Satisfaction Level, Sales Target, looker studio, Visualisasi Data

Abstract

Data management in projects is an important activity in a company because over time the company develops more and more versatile data it has. Growing and highly complex business and supply of goods on a large scale makes data processing difficult. In the current situation, data processing starting from exporting, filtering data, analyzing and visualizing data is still done using Excel files which takes quite a long time, so that management decision making is still not optimal. . The purpose of this research is to provide users with important information and data in real time to speed up the decision-making process. Therefore, the data must be analyzed using the exploratory data analysis (EDA) method. EDA is carried out starting from understanding business objects, with revenue/sales as one of the metrics used to see the company's performance profile and the correlation of other variables. target knife The results of this study indicate that monthly sales comparisons, sales comparisons for each product and composition have the lowest sales generation and customer satisfaction, so that they can be used as material for management evaluation and EDA results can be seen in data visualization applications

Downloads

Download data is not yet available.

References

Lia Sutiani, “5 Contoh Data Penjualan dan Manfaatnya Bagi Bisnis,” COMPAS.CO.ID, 2022.

Cyan, “Contoh Laporan Penjualan Perusahaan Dagang Sederhana,” https://www.jurnal.id/, 2022.

Ayu Rifka Sitoresmi, “Data Sekunder Adalah Sumber yang Telah Ada Sebelumnya, Pahami Definisi dan Contohnya,” https://www.liputan6.com/, 2022.

Rian Tineges, “Mengenal Macam Analisis dengan Metode Analisis Data Sekunder,” dqlab.id, 2021.

B. Yanto, A. Sudaryanto, and Hasri Ainun Pratiwi, “Data Visualization Analysis of Waste Production Volume in Every District of Tangerang Regency in 2021 Using Looker Studio and Big Query Platforms,” J. Ict Apl. Syst., vol. 2, no. 1, pp. 35–40, 2023, doi: 10.56313/jictas.v2i1.239.

B. Yanto, W. Eka Putra, and F. Erwis, “Visualization of Covid-19 Data in Indonesia in 2022 through the Google Data Studio Dashboard,” J. Ict Apl. Syst., vol. 2, no. 1, pp. 29–34, 2023, doi: 10.56313/jictas.v2i1.237.

Arkan Perdana, “Visualisasi Data: Pengertian, Fungsi, dan Tipe-tipenya,” 2022.

E. D. Jayanti and N. Ani, “Pembangunan Dashboard Untuk Visualisasi Analisa Keuangan,” 2017.

Arkan Perdana, “Berkenalan dengan Google Sheets, Aplikasi Spreadsheet yang Gratis dan Komplet,” https://glints.com/id, 2021.

Bangsyams, “Sumber data data source adalah entitas yang,” https://www.coursehero.com/, 2017.

Meredith Hart, “10 Contoh Dasbor Penjualan Yang Akan Membantu Anda Menyiapkannya Sendiri,” blog.hubspot.com, 2023.

Jonathan kurniawan, “cara jitu dalam menentukan target penjualan perusahaan anda,” www.hashmicro.com, 2023.

Additional Files

Published

28-01-2024

How to Cite

[1]
Z. Arfandi, B. Yanto, K. Sabri, Y. Aini, and A. Lubis, “Analisa Visualisasi Data Penjualan dan Tingkat Kepuasan Penjualan Menggunakan Platform Lookerstudio”, RJOCS , vol. 10, no. 1, pp. 38–45, Jan. 2024.