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ABSTRACT This study aims to model the outpatient service queue system in a private 
hospital in Yogyakarta using the Max-Plus algebra approach and to represent the model 
using a Petri net. The research was motivated by the complexity and inefficiency observed 
in outpatient queues, which often lead to long and unpredictable waiting times. Data were 
collected through direct observation of the outpatient process on the fourth floor of a 
private hospital. The sequence of services was first illustrated using a flowchart to map each 
stage experienced by patients. The time data for each process were then used to construct 
a Max-Plus algebra matrix, providing a mathematical model of the system. This model was 
further expressed in the form of a Petri net to illustrate the discrete and sequential nature 
of the service flow. The simulation was performed using Scilab software to analyze the 
system's dynamics. Results from the simulation revealed that the service system is non-
periodic, indicated by the absence of an eigenvalue. This suggests that the total service time 
may increase as the number of patients grows. The findings provide insight into the 
structure of the outpatient queue system and offer a mathematical framework for future 
system analysis or optimization. 

Keywords: Max-Plus algebra, Petri net, outpatient queue, simulation, mathematical 
modeling 

ABSTRAK Penelitian ini bertujuan untuk memodelkan sistem antrian layanan rawat jalan di 
rumah sakit swasta di Yogyakarta menggunakan pendekatan aljabar Max-Plus, serta 
merepresentasikan model tersebut dalam bentuk jaringan Petri. Penelitian ini 
dilatarbelakangi oleh kompleksitas dan ketidakefisienan dalam sistem antrian pasien rawat 
jalan, yang sering kali menyebabkan waktu tunggu yang panjang dan tidak terprediksi. Data 
diperoleh melalui observasi langsung terhadap proses layanan di lantai 4 salah satu rumah 
sakit swasta. Urutan pelayanan digambarkan terlebih dahulu dalam bentuk diagram alir 
berdasarkan tahapan-tahapan yang dialami pasien. Selanjutnya, data waktu dari setiap 
proses digunakan untuk membentuk model matematis berupa matriks Max-Plus. Model 
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tersebut kemudian dinyatakan dalam bentuk jaringan Petri untuk menggambarkan sifat 
sistem layanan yang diskrit dan berurutan. Simulasi dilakukan menggunakan perangkat 
lunak Scilab untuk menganalisis dinamika sistem. Hasil simulasi menunjukkan bahwa sistem 
layanan bersifat non-periodik, yang ditunjukkan dengan tidak ditemukannya nilai eigen. Hal 
ini mengindikasikan bahwa waktu layanan total dapat meningkat seiring bertambahnya 
jumlah pasien. Temuan ini memberikan pemahaman tentang struktur sistem antrian rawat 
jalan dan dapat menjadi dasar untuk analisis dan evaluasi sistem lebih lanjut secara 
matematis. 

Kata-kata kunci: aljabar Max-Plus, jaringan Petri, antrian rawat jalan, simulasi, pemodelan 
matematis 

INTRODUCTION 

Queueing systems are a significant subject of study in queueing theory and discrete 
system modeling, as they represent real-world situations where the demand for 
services exceeds the available service capacity. This phenomenon is commonly found 
in various sectors of everyday life, including transportation, banking, and healthcare. 
When service capacity fails to accommodate high demand, users are forced to wait, 
which can lead to several negative consequences. Long queues not only reduce 
efficiency and productivity but also harm the service provider’s reputation and 
profitability (Hariputra, Defit, & Sumijan, 2022; Paulina Maure et al., 2021). 

One of the most critical types of queueing systems can be found in healthcare 
facilities, particularly in hospitals. According to the Ministry of Health, hospitals are 
healthcare service facilities that provide comprehensive medical services, including 
outpatient, inpatient, and emergency care. In Yogyakarta, there is a private hospital 
known for its high-quality service, making it a primary referral center for a wide range 
of medical needs. The high volume of patients, especially during peak hours, often 
leads to long queues in outpatient services. 

To address queue-related problems and analyze service systems systematically, 
mathematical modeling is essential. One effective approach is the use of Max-Plus 
algebra. Max-Plus algebra is a mathematical structure defined on the extended set 
of real numbers ℝ ∪ {−∞}, using the maximum operator (⊕) for addition and regular 
addition (⊗) for multiplication (Rudhito, 2016). This algebra has several applications 
in modeling dynamic systems, such as transportation scheduling, production 
systems, shortest path analysis (Subiono, 2015), and queueing networks (Rudhito, 
2016). Employing Max-Plus algebra allows for efficient and structured modeling of 
discrete service system dynamics in a mathematical framework. 

Max-Plus algebra is a mathematical structure defined over the set ℝ ∪ {−∞}, equipped 
with two operations: the maximum (⊕) and the usual addition (⊗). According to 
Rudhito (2016), for α ∈ ℝ_max and matrices A, B ∈ ℝ!"#

!×%, the scalar-matrix product 
α ⊗ A results in a matrix where each element is computed as (α ⊗ A)ij = α ⊗ Aij for i 
= 1,…,m and j = 1,…,n. Meanwhile, the matrix product A ⊗ B is defined by 
(𝐴 ⊗ 𝐵	)&' = ⨁()*

+ 	𝐴&( ⊗𝐵('  for the same indices. 
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Some properties of Max-Plus algebra, as stated in Theorem 2.2.4 (Rudhito, 2016), 
include: 

Associativity: (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C), 

Commutativity: A ⊕ B = B ⊕ A, 

Distributivity: A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C), 

Idempotency: A ⊕ A = A, 

Distributive with respect to right multiplication: (A ⊕ B) ⊗ C = (A ⊗ C) ⊕ (B ⊗ C). 

To complement the algebraic model, this study also uses Petri nets, which are widely 
applied to represent discrete event systems (Subiono, 2015). In Petri nets, the 
relationship between events is described using transitions and places. A transition 
occurs when all input places are marked, representing a change of state. A Petri net 
is formally defined as a 4-tuple (P, T, A, ω), where: 

• P is a finite set of places {p₁, p₂, ..., pₙ}, 
• T is a finite set of transitions {t₁, t₂, ..., tₘ}, 

• A is a set of directed arcs such that A ⊆ (P × T) ∪ (T × P), 
• ω is a weight function mapping each arc to a positive integer. 

Although P and T are typically finite, they can also be countably infinite depending 
on the complexity of the system. In most practical cases, finite models are sufficient 
to represent systems such as outpatient service queues in hospitals. 

According to Sari and Asih (2015), patients often wait for more than one hour to 
receive internal medicine services, highlighting the need for mathematical 
approaches capable of evaluating such systems more efficiently. Unlike traditional 
models that rely on probability or simulation, Max-Plus algebra offers a deterministic 
method to analyze discrete dynamic systems. When integrated with Petri nets, this 
approach allows for a clearer and more detailed visualization of service processes, 
making it easier to identify and improve inefficiencies. 

Several previous studies have applied Max-Plus algebra to various real-world 
problems. These include outpatient service modeling with Petri net representations 
(Hardiyanti, Yuniwati, & Yustita, 2017; Tutupary & Lesnussa, 2013; Paulina Maure et 
al., 2021), scheduling in craft production (Yahya, Nurwan, & Resmawan, 2022), and 
optimization of tofu production processes (Nawar, Rahakbauw, & Patty, 2023). A 
related study by Saumi and Amalia (2021) modeled queues in a hospital's cardiology 
department using a single-channel, single-phase FIFO system. Another by Alamsyah 
and Sari (2023) utilized the simplex method via POM software to optimize resource 
allocation and healthcare quality. 

The novelty of this study lies in the specific outpatient workflow and service 
structure observed, starting from patient registration to prescription retrieval at the 
pharmacy in a private hospital in Yogyakarta. Therefore, the aim of this study is to 
develop a Max-Plus algebra and Petri net-based model for outpatient service queues 
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in a hospital, providing an analytical framework to better understand and evaluate 
service efficiency. 

METHODS 

This study is a qualitative descriptive research aimed at modeling the outpatient 
service queue system in a private hospital in Yogyakarta using the Max-Plus algebra 
approach and Petri net representation. Data were collected through direct 
observation of the outpatient service process, covering the flow from patient 
registration to medication retrieval at the pharmacy. Observations involved 
recording the arrival times and service durations at each stage using a stopwatch and 
structured observation sheets. 

The collected data were used to construct a service flowchart. Based on this flow, a 
mathematical model was developed in the form of a Max-Plus matrix, which was 
then visualized as a Petri net to represent the discrete transitions and conditions 
within the system. 

Data analysis was conducted descriptively using Scilab software to simulate the 
system and examine its dynamics. The analysis focused on determining whether the 
system exhibits periodic behavior, which is assessed based on the presence or 
absence of an eigenvalue in the Max-Plus matrix model. 

FINDING AND DISCUSSION 

Steps or Algorithm Used 

The initial step of this research involved collecting data through direct observation. 
The service times at each stage of the outpatient process were recorded using a 
stopwatch. Based on the recorded data, a flowchart was developed to visualize the 
sequence of services experienced by patients from entry to exit. 

Before constructing the mathematical model, variables were defined to represent 
each service duration and the transition time between stages. Using these variables, 
Max-Plus algebraic expressions were formulated to represent the relationships 
between service stages. These expressions were then used to build the 
corresponding Max-Plus matrix model. 

The resulting matrix was then analyzed using Scilab software to calculate the 
eigenvalue of the system. The result of this calculation served as the basis for 
concluding the system's periodicity, service efficiency, and identifying possible 
improvements. 

Outpatient Service Flowchart 

The following figure presents the flowchart of the outpatient service process on the 
fourth floor of the private hospital in Yogyakarta. It includes all stages from patient 
admission, administrative procedures, consultation in examination rooms, to 
prescription collection and patient discharge. 
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Figure 1. Outpatient Service Flowchart – 4th Floor 

 

Max-Plus Algebra Model of the Outpatient Service Queue System in a Private 
Hospital in Yogyakarta 

The variable descriptions used are as follows: 

a(i)  = patient arrival time on the 4th floor at the i-th 

b(i)  = time to start using the registration machine at the i-th 

c(i)  = time to finish using the registration machine at the i-th 

d(i)  = time to start service at nurse station 1 at the i-th 

e(i)  = time to finish service at nurse station 1 at the i-th 

f(i)  = time to start service at nurse station 2 at the i-th 

g(i)  = time to finish service at nurse station 2 at the i-th 

h(i)  = time to start service at nurse station 3 at the i-th 

i(i)  = time to finish service at nurse station 3 at the i-th 

j(i)  = time to start outpatient service in room 402 at the i-th 
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k(i)  = time to finish outpatient service in room 402 at the i-th 

l(i)  = time to start outpatient service in room 406 at the i-th 

m(i)  = time to finish outpatient service in room 406 at the i-th 

n(i)  = time to start outpatient service in room 417 at the i-th 

o(i)  = time to finish outpatient service in room 417 at the i-th 

p(i)  = time to start outpatient service in room 418 at the i-th 

q(i)  = time to finish outpatient service in room 418 at the i-th 

r(i)  = time to start outpatient service in room 419 at the i-th 

s(i)  = time to finish outpatient service in room 419 at the i-th 

t(i)  = time to start outpatient service in room 420 at the i-th 

u(i)  = time to finish outpatient service in room 420 at the i-th 

v(i)  = time to start outpatient service in room 421 at the i-th 

w(i)  = time to finish outpatient service in room 421 at the i-th 

x(i)  = time to start outpatient service in room 422 at the i-th 

y(i)  = time to finish outpatient service in room 422 at the i-th 

z(i)  = time to start outpatient service in room 429 at the i-th 

aa(i)  = time to finish outpatient service in room 429 at the i-th 

ab(i)  = time to start prescription handover at the i-th 

ac(i)  = time to finish prescription handover at the i-th 

ad(i)  = time to start payment at the i-th 

ae(i)  = time to finish payment at the i-th 

af(i)  = time to start medication retrieval at the i-th 

ag(i)  = time to finish medication retrieval at the i-th 

Va  = average duration of registration machine service (in minutes) 

Vb  = average walking time from registration to nurse station (in minutes) 

Vc  = average nurse station service time (in minutes) 

Vd  = average walking time to consultation room (in minutes) 

Ve  = average consultation time with doctor (in minutes) 

Vf  = average walking time from doctor to prescription 

Vg  = average time for prescription handover (in minutes) 

Vh  = average payment time (in minutes) 

Vi  = average waiting time for medicine (in minutes) 

Vj  = average medication retrieval time (in minutes) 
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Figure 2. Petri Net of the Outpatient Queue System on the 4th Floor 

 

Table 1. Average Service Time at Each Stage 

Variable 
Code 

Description of Service Time 
Average 

(minutes) 

Va Registration machine service time 0.23 

Vb Walking time to nurse station 1.00 

Vc Nurse station service time 2.267 

Vd Walking time to doctor's room 1.00 

Ve Doctor consultation time 11.583 
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Variable 
Code 

Description of Service Time 
Average 

(minutes) 

Vf Walking time to prescription handover 1.00 

Vg Prescription handover time 0.80 

Vh Payment time 1.15 

Vi Waiting time for medication 28.083 

Vj Medication retrieval time 2.05 

 

There are several assumptions used in this model, including: patients arrive at fixed 
intervals, each stage has a fixed average service time as listed in the table, all patients 
are served based on the order of arrival, and each service stage has a fixed number 
of staff. 

𝑎(𝑖) = 𝑎(𝑖) 
𝑏(𝑖) = 𝑎(𝑖) ⊕ 𝑐(𝑖 − 1) 
𝑐(𝑖) = 𝑏(𝑖) ⊗ 𝑉𝑎 

= (𝑎(𝑖) ⊗ 0,23) ⊕ (𝑐(𝑖 − 1)⊗ 0,23) 
𝑑(𝑖) = (𝑐(𝑖) ⊗ 𝑉𝑏)⊕ 𝑑(𝑖 − 1) 

= (𝑎(𝑖) ⊗ 1,23) ⊕ (𝑐(𝑖 − 1)⊗ 1,23) ⊕ 𝑑(𝑖 − 1) 
𝑒(𝑖) = 𝑑(𝑖) ⊗ 𝑉𝑐 

= (𝑎(𝑖) ⊗ 3,497) ⊕ (𝑐(𝑖 − 1)⊗ 3,497) ⊕ (𝑑(𝑖 − 1) 	⊗ 2,267) 
𝑓(𝑖) = (𝑐(𝑖) ⊗ 𝑉𝑏)⊕ 𝑓(𝑖 − 1) 

= (𝑎(𝑖) ⊗ 1,23) ⊕ (𝑐(𝑖 − 1)⊗ 1,23) ⊕ 𝑓(𝑖 − 1) 
𝑔(𝑖) = 𝑓(𝑖) ⊗ 𝑉𝑐 

= (𝑎(𝑖) ⊗ 3,497) ⊕ (𝑐(𝑖 − 1)⊗ 3,497) ⊕ (𝑓(𝑖 − 1) 	⊗ 2,267) 
ℎ(𝑖) = (𝑐(𝑖) ⊗ 𝑉𝑏)⊕ ℎ(𝑖 − 1) 

= (𝑎(𝑖) ⊗ 1,23) ⊕ (𝑐(𝑖 − 1)⊗ 1,23) ⊕ ℎ(𝑖 − 1) 
𝑖(𝑖) = ℎ(𝑖) ⊗ 𝑉𝑐 

= (𝑎(𝑖) ⊗ 3,497) ⊕ (𝑐(𝑖 − 1)⊗ 3,497) ⊕ (ℎ(𝑖 − 1) 	⊗ 2,267) 
𝑗(𝑖) 	= (𝑒(𝑖) ⊗ 𝑉𝑑)⊕ 𝑗(𝑖 − 1) 

= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑑(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑗(𝑖 − 1) 
𝑘(𝑖) = 𝑗(𝑖) ⊗ 𝑉𝑒 

= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑑(𝑖 − 1) ⊗ 14,85) ⊕ (𝑗(𝑖 − 1)
⊗ 11,583) 

𝑙(𝑖) 	= (𝑒(𝑖) ⊗ 𝑉𝑑)⊕ 𝑙(𝑖 − 1) 
= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑑(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑙(𝑖 − 1) 

𝑚(𝑖) = 𝑙(𝑖) ⊗ 𝑉𝑒 
= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑑(𝑖 − 1) ⊗ 14,85) ⊕ (𝑙(𝑖 − 1)

⊗ 11,583) 
𝑛(𝑖) 	= (𝑔(𝑖) ⊗ 𝑉𝑑)⊕ 𝑛(𝑖 − 1) 
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= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑓(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑛(𝑖 − 1) 
 

𝑜(𝑖) = 𝑛(𝑖) ⊗ 𝑉𝑒 
= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑓(𝑖 − 1)⊗ 14,85)⊕ (𝑛(𝑖 − 1)

⊗ 11,583) 
𝑝(𝑖) 	= (𝑔(𝑖) ⊗ 𝑉𝑑)⊕ 𝑝(𝑖 − 1) 

= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑓(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑝(𝑖 − 1) 
𝑞(𝑖) = 𝑝(𝑖) ⊗ 𝑉𝑒 

= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑓(𝑖 − 1)⊗ 14,85)⊕ (𝑝(𝑖 − 1)
⊗ 11,583) 

𝑟(𝑖) 	= (𝑔(𝑖) ⊗ 𝑉𝑑)⊕ 𝑟(𝑖 − 1) 
= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑓(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑟(𝑖 − 1) 

𝑠(𝑖) = 𝑟(𝑖) ⊗ 𝑉𝑒 
= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑓(𝑖 − 1)⊗ 14,85)⊕ (𝑟(𝑖 − 1)

⊗ 11,583) 
𝑡(𝑖) 	= (𝑔(𝑖) ⊗ 𝑉𝑑)⊕ 𝑡(𝑖 − 1) 

= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑓(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑡(𝑖 − 1) 
𝑢(𝑖) = 𝑡(𝑖) ⊗ 𝑉𝑒 

= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑓(𝑖 − 1)⊗ 14,85)⊕ (𝑡(𝑖 − 1)
⊗ 11,583) 

𝑣(𝑖) 	= (𝑔(𝑖) ⊗ 𝑉𝑑)⊕ 𝑣(𝑖 − 1) 
= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑓(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑣(𝑖 − 1) 

𝑤(𝑖) = 𝑣(𝑖) ⊗ 𝑉𝑒 
= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑓(𝑖 − 1)⊗ 14,85)⊕ (𝑣(𝑖 − 1)

⊗ 11,583) 
𝑥(𝑖) 	= (𝑔(𝑖) ⊗ 𝑉𝑑)⊕ 𝑥(𝑖 − 1) 

= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (𝑓(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑥(𝑖 − 1) 
𝑦(𝑖) = 𝑥(𝑖) ⊗ 𝑉𝑒 

= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (𝑓(𝑖 − 1)⊗ 14,85)⊕ (𝑥(𝑖 − 1)
⊗ 11,583) 

𝑧(𝑖) 	= (ℎ(𝑖) ⊗ 𝑉𝑑)⊕ 𝑧(𝑖 − 1) 
= (𝑎(𝑖) ⊗ 4,497) ⊕ (𝑐(𝑖 − 1)⊗ 4,497) ⊕ (ℎ(𝑖 − 1) 	⊗ 3,267) ⊕ 𝑧(𝑖 − 1) 

𝑎𝑎(𝑖) = 𝑧(𝑖) ⊗ 𝑉𝑒 
= (𝑎(𝑖) ⊗ 16,08)⊕ (𝑐(𝑖 − 1) ⊗ 16,08) ⊕ (ℎ(𝑖 − 1) ⊗ 14,85) ⊕ (𝑧(𝑖 − 1)

⊗ 11,583 
𝑎𝑏(𝑖) = UV𝑘(𝑖) ⊕𝑚(𝑖) ⊕ 𝑜(𝑖) ⊕ 𝑞(𝑖) ⊕ 𝑠(𝑖) ⊕ 𝑢(𝑖) ⊕ 𝑤(𝑖) ⊕ 𝑦(𝑖) ⊕ 𝑎𝑎(𝑖)W ⊗ 𝑉𝑓X

⊕ 𝑎𝑏(𝑖 − 1) 
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= (𝑎(𝑖) ⊗ 17,08) ⊕ (𝑐(𝑖 − 1)⊗ 17,08)⊕ (𝑑(𝑖 − 1) ⊗ 15,85)
⊕ (𝑓(𝑖 − 1)⊗ 15,85) ⊕ (ℎ(𝑖 − 1)⊗ 15,85)
⊕ (𝑗(𝑖 − 1) ⊗ 12,582)⊕ (𝑙(𝑖 − 1) ⊗ 12,582)
⊕ (𝑛(𝑖 − 1) ⊗ 12,582)⊕ (𝑝(𝑖 − 1)⊗ 12,582)
⊕ (𝑟(𝑖 − 1) ⊗ 12,582)⊕ (𝑡(𝑖 − 1)⊗ 12,582)
⊕ (𝑣(𝑖 − 1) ⊗ 12,582)⊕ (𝑥(𝑖 − 1)⊗ 12,582)
⊕ (𝑧(𝑖 − 1)⊗ 12,582) ⊕ 𝑎𝑏(𝑖 − 1) 

𝑎𝑐(𝑖) = 𝑎𝑏(𝑖) ⊗ 𝑉𝑔 
= (𝑎(𝑖) ⊗ 17,88)⊕ (𝑐(𝑖 − 1) ⊗ 17,88) ⊕ (𝑑(𝑖 − 1)⊗ 16,65)

⊕ (𝑓(𝑖 − 1)⊗ 16,65)⊕ (ℎ(𝑖 − 1) ⊗ 16,65)
⊕ (𝑗(𝑖 − 1)⊗ 13,382) ⊕ (𝑙(𝑖 − 1) ⊗ 13,382)
⊕ (𝑛(𝑖 − 1) ⊗ 13,382)⊕ (𝑝(𝑖 − 1) ⊗ 13,382)
⊕ (𝑟(𝑖 − 1)⊗ 13,382) ⊕ (𝑡(𝑖 − 1) ⊗ 13,382)
⊕ (𝑣(𝑖 − 1)⊗ 13,382) ⊕ (𝑥(𝑖 − 1) ⊗ 13,382)
⊕ (𝑧(𝑖 − 1)⊗ 13,382) ⊕ (𝑎𝑏(𝑖 − 1) ⊗ 0,8) 

𝑎𝑑(𝑖) = 𝑎𝑐(𝑖) ⊕ 𝑎𝑑(𝑖 − 1) 
= (𝑎(𝑖) ⊗ 17,88) ⊕ (𝑐(𝑖 − 1)⊗ 17,88)⊕ (𝑑(𝑖 − 1) ⊗ 16,65)

⊕ (𝑓(𝑖 − 1)⊗ 16,65) ⊕ (ℎ(𝑖 − 1)⊗ 16,65)
⊕ (𝑗(𝑖 − 1) ⊗ 13,382)⊕ (𝑙(𝑖 − 1) ⊗ 13,382)
⊕ (𝑛(𝑖 − 1) ⊗ 13,382)⊕ (𝑝(𝑖 − 1)⊗ 13,382)
⊕ (𝑟(𝑖 − 1) ⊗ 13,382)⊕ (𝑡(𝑖 − 1)⊗ 13,382)
⊕ (𝑣(𝑖 − 1) ⊗ 13,382)⊕ (𝑥(𝑖 − 1)⊗ 13,382)
⊕ (𝑧(𝑖 − 1)⊗ 13,382) ⊕ (𝑎𝑏(𝑖 − 1)⊗ 0,8) ⊕ 𝑎𝑑(𝑖 − 1) 

𝑎𝑒(𝑖) = 𝑎𝑑(𝑖) ⊗ 𝑉ℎ  
= (𝑎(𝑖) ⊗ 19,03) ⊕ (𝑐(𝑖 − 1)⊗ 19,03) ⊕ (𝑑(𝑖 − 1)⊗ 17,8)

⊕ (𝑓(𝑖 − 1) ⊗ 17,8) ⊕ (ℎ(𝑖 − 1)⊗ 17,8) ⊕ (𝑗(𝑖 − 1)⊗ 14,532)
⊕ (𝑙(𝑖 − 1)⊗ 14,532) ⊕ (𝑛(𝑖 − 1) ⊗ 14,532)
⊕ (𝑝(𝑖 − 1)⊗ 14,532) ⊕ (𝑟(𝑖 − 1)⊗ 14,532)
⊕ (𝑡(𝑖 − 1) ⊗ 14,532)⊕ (𝑣(𝑖 − 1) ⊗ 14,532)
⊕ (𝑥(𝑖 − 1) ⊗ 14,532)⊕ (𝑧(𝑖 − 1)⊗ 14,532) ⊕ (𝑎𝑏(𝑖 − 1)
⊗ 1,95) ⊕ (𝑎𝑑(𝑖 − 1)⊗ 1,15) 

𝑎𝑓(𝑖) = (𝑎𝑒(𝑖) ⊗ 𝑉𝑖) ⊕ (𝑎𝑓(𝑖 − 1)⊗ 𝑉𝑖)  
= (𝑎(𝑖) ⊗ 47,113) ⊕ (𝑐(𝑖 − 1)⊗ 47,113) ⊕ (𝑑(𝑖 − 1)⊗ 45,883)

⊕ (𝑓(𝑖 − 1)⊗ 45,883) ⊕ (ℎ(𝑖 − 1) ⊗ 45,883)
⊕ (𝑗(𝑖 − 1) ⊗ 42,615)⊕ (𝑙(𝑖 − 1) ⊗ 42,615)
⊕ (𝑛(𝑖 − 1) ⊗ 42,615)⊕ (𝑝(𝑖 − 1)⊗ 42,615)
⊕ (𝑟(𝑖 − 1) ⊗ 42,615)⊕ (𝑡(𝑖 − 1)⊗ 42,615)
⊕ (𝑣(𝑖 − 1) ⊗ 42,615)⊕ (𝑥(𝑖 − 1)⊗ 42,615)
⊕ (𝑧(𝑖 − 1)⊗ 42,615) ⊕ (𝑎𝑏(𝑖 − 1)⊗ 30,033) ⊕ (𝑎𝑑(𝑖 − 1)
⊗ 29,233) ⊕ (𝑎𝑓(𝑖 − 1)⊗ 28,083) 

𝑎𝑔(𝑖) = 	𝑎𝑓(𝑖) ⊗ 𝑉𝑗 

https://doi.org/10.30606/absis.v8i1.2785


  
 
 
 

 
 
 
 

39 

Budiarta et al. 
 
 
 
 
 
 

Vol. 8 No. 1, April 2025 
 
 

https://doi.org/10.30606/absis.v8i1.2785 
 
 

= (𝑎(𝑖) ⊗ 49,163)⊕ (𝑐(𝑖 − 1) ⊗ 49,163)⊕ (𝑑(𝑖 − 1) ⊗ 47,933)
⊕ (𝑓(𝑖 − 1) ⊗ 47,933)⊕ (ℎ(𝑖 − 1) ⊗ 47,933)⊕ (𝑗(𝑖 − 1) ⊗ 44,665)
⊕ (𝑙(𝑖 − 1)⊗ 44,665) ⊕ (𝑛(𝑖 − 1)⊗ 44,665) ⊕ (𝑝(𝑖 − 1) ⊗ 44,665)
⊕ (𝑟(𝑖 − 1) ⊗ 44,665)⊕ (𝑡(𝑖 − 1) ⊗ 44,665)⊕ (𝑣(𝑖 − 1) ⊗ 44,665)
⊕ (𝑥(𝑖 − 1) ⊗ 44,665)⊕ (𝑧(𝑖 − 1)⊗ 44,665) ⊕ (𝑎𝑏(𝑖 − 1)⊗ 32,083)
⊕ (𝑎𝑑(𝑖 − 1)⊗ 31,283) ⊕ (𝑎𝑓(𝑖 − 1)⊗ 30,133) 

 

Next, the model was formulated into the following Max-Plus algebra matrix. 

 
Figure 3. Max-Plus algebra matrix. 

Based on the calculations, the Max-Plus algebra matrix was obtained from modeling 
the outpatient service queue system at a private hospital in Yogyakarta using Max-
Plus Algebra. This model represents a theoretical representation. 

This matrix is then used to analyze the queue system by simulating the system and 
calculating its eigenvalue. The simulation is useful for estimating the total time a 
patient needs to complete the entire outpatient service process. Meanwhile, the 
eigenvalue helps determine whether there is a recurring pattern or stability in the 
service cycle of outpatient care at the hospital. The analysis was conducted using 
Scilab 5.5.2 software. 

Based on the simulation results, it was observed that the increase in values from left 
to right indicates that the cumulative service time increases over time. Rows with 
higher values may indicate stages that take longer or experience queue buildup. The 
maximum recorded value is 301.91 minutes or approximately 5 hours, meaning that 
the total time required to complete all outpatient processes for the last patient in 
the worst-case scenario is 5 hours. This is a relatively long waiting time, which could 
lead to patient dissatisfaction. 

1) To address this issue, we offer the following recommendations for the hospital: 
Increase the number of staff at stages with the longest service times, 

2) Optimize the overall service flow, and 
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3) Implement a scheduling system to reduce patient arrival surges. 

The following is the result of the simulation using Scilab 5.5.2: 

 

Figure 3. Queue System Simulation Results 

Additionally, by observing the bottom row, it can be concluded that the time 
difference between patients from registration to payment is approximately 30 
minutes. Based on the developed model, several optimization actions can be taken, 
such as adding staff in the medication retrieval stage (which has the highest average 
service time) and adopting an electronic queue system to minimize administrative 
delays. 

This study differs from the findings of Hardiyanti, Yuniwati, and Divi Yustita (2017), 
who used Max-Plus algebra to model outpatient services at Al Huda Genteng 
Hospital. Their model showed shorter average waiting times due to a focus on 
prioritized patients. 

Next, an analysis was conducted to calculate the eigenvalue. According to the results 
from Scilab, the matrix does not have an eigenvalue. This indicates irregular behavior 
in waiting times and arrival patterns of each patient. The absence of an eigenvalue 
suggests that each stage in the outpatient service process is non-periodic. 

The model developed in this study has significant potential to support hospital 
management in improving service efficiency. With this model, hospital 
administrators can monitor service bottlenecks and simulate outcomes before 
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implementing operational changes, such as increasing staff or optimizing workflow. 
Moreover, the model enables more precise resource planning based on daily patient 
volume. Thus, it functions not only as an analytical tool but also as a practical guide 
for strategic decision-making. 

This model also holds potential for broader applications beyond outpatient services. 
For instance, it could be applied to radiology services, where long waits are common 
due to limited equipment and personnel. Similarly, the pharmacy's medication 
pickup queues could be optimized using this approach. Beyond healthcare, the 
model is relevant to queue systems in transportation (e.g., airport check-ins) and 
logistics (e.g., warehouse distribution). With its flexibility, the model can be adapted 
to various operational settings with similar queuing patterns. 

CONCLUSIONS AND RECOMMENDATIONS 

Based on the results and discussion, the outpatient queue system at a private 
hospital in Yogyakarta can be modeled using Max-Plus Algebra. The modeling 
process resulted in a Max-Plus algebra matrix that represents the flow of services 
mathematically. Prior to matrix construction, a Petri net was developed to visualize 
the service sequence and support the modeling process. 

This study was limited to the formulation of the matrix model. The resulting Max-
Plus matrix can be further utilized for analyzing the outpatient queue system in more 
depth, particularly in evaluating service performance and identifying potential 
delays. Follow-up research may focus on applying this model to conduct simulations, 
optimize the queue system, or support hospital management in improving 
operational efficiency. 

REFERENCES 

Alamsyah, A., & Sari, R. F. (2023). Optimisasi Multi-Objektif Pada Pelayanan 
Kesehatan Di Ruang Rawat Inap Rumah Sakit . Jurnal Absis: Jurnal Pendidikan 
Matematika Dan Matematika, 6(1), 826–838. 
https://doi.org/10.30606/absis.v6i1.2200 

Hardiyanti, S. A., Yuniwati, I., & Yustita, A. D. (2017). Bentuk Petri Net dan model 
aljabar Max-Plus pada sistem pelayanan pasien rawat jalan Rumah Sakit Al Huda 
Genteng, Banyuwangi. Jurnal UJMC, 3(2), 1–8. 

Hariputra, R. P., Defit, S., & Sumijan. (2022). Analisis sistem antrian dalam 
meningkatkan efektivitas pelayanan menggunakan metode accidental 
sampling. Jurnal Sistem Informasi dan Teknologi, 4(2), 70–75. 
https://doi.org/10.37034/jsisfotek.v4i2.127 

Kementerian Kesehatan Republik Indonesia. (2020). Peraturan Menteri Kesehatan 
Republik Indonesia Nomor 3 Tahun 2020 tentang Klasifikasi dan Perizinan Rumah 
Sakit. 

https://doi.org/10.30606/absis.v8i1.2785
https://doi.org/10.30606/absis.v6i1.2200
https://doi.org/10.37034/jsisfotek.v4i2.127


 
 
 
 

 
 
 
 
42 

Vol. 8 No. 1, April 2025 
 

Budiarta et al. 
 
 

https://doi.org/10.30606/absis.v8i1.2785 
 
 

Nawar, W., Rahakbauw, D. L., & Patty, D. (2023). Penjadwalan waktu proses produksi 
tahu menggunakan pendekatan aljabar Max-Plus (Studi kasus: Pabrik Sumber 
Rizki). Tensor, 4(2), 73–82. https://doi.org/10.30598/tensorvol4iss2pp73-82 

Maure, O. P., Ningsi, G. P., & Nay, F. A. (2021). Pemodelan sistem antrian pasien rawat 
jalan menggunakan Petri Net dan aljabar Max-Plus: Studi kasus RSU di 
Yogyakarta. Leibniz: Jurnal Matematika, 1(2), 1–11. 
https://doi.org/10.59632/leibniz.v1i2.101 

Rudhito, M. A. (2016). Aljabar Max-Plus dan Penerapannya. Sanata Dharma University 
Press. 

Saumi, F., Amalia, R., Amelia, & Nurviana. (2021). Analisis Sistem Antrian Pada 
Pelayanan Poli Jantung RSUD Kota Langsa. Jurnal Absis: Jurnal Pendidikan 
Matematika Dan Matematika, 3(2), 297–308. 
https://doi.org/10.30606/absis.v3i2.668 

Subiono. (2015). Aljabar Min-Max Plus dan terapannya. 

Tutupary, F. S., & Lesnussa, Y. A. (2013). Aplikasi Petri Net pada sistem pelayanan 
pasien rawat jalan peserta Askes di Rumah Sakit Umum Daerah Dr. Haulussy 
Ambon. Gamatika, 3(2), 147–154. 

Yahya, L., Nurwan, N., & Resmawan, R. (2022). Menentukan waktu optimal untuk 
pembuatan kerajinan sulaman Karawo menggunakan aljabar Max-Plus. 
Vygotsky, 4(1), 23. https://doi.org/10.30736/voj.v4i1.442 

 

 

 

https://doi.org/10.30606/absis.v8i1.2785
https://doi.org/10.30598/tensorvol4iss2pp73-82
https://doi.org/10.59632/leibniz.v1i2.101
https://doi.org/10.30606/absis.v3i2.668
https://doi.org/10.30736/voj.v4i1.442

